Overview

BendBright™ A1 fiber encompasses all the features of ESMF™ Optical Fiber (Enhanced Single-Mode Fiber) and provides high resistance to additional losses due to macro-bending, particularly in the 1600 nm wavelength region.

This fiber can be used in all cable constructions, including loose tube, tight buffered, ribbon, and central tube designs. It supports long-haul, metropolitan and in particular access and premises (FTTH) applications in telecommunications, CATV, utility and intelligent traffic networks.

Opening the transmission window up to the highest wavelength region in the L-band has challenged traditional fiber macro-bending performance. BendBright™ meets and exceeds the challenge.

The fibers are further enhanced with the proprietary ColorLock™ coating. This coating enables optimum fiber performance, reliability and durability, even in harsh environments.

Features and Benefits

Low bending losses
- Up to 1/10th the bending loss of standard single mode fiber provides improved system performance.
- Low bending loss at 15 mm bend radius; 10 turn loss ≤ 0.25 dB at 1550 nm
- Specified down to a 10 mm bend radius; 1 turn loss ≤ 0.75 dB at 1550 nm
- Allows a smaller bend radius with small diameter cables such as patch cords and distribution cables.
- Improperly installed small diameter bends result in lower attenuation impacts on systems.
- Allow the use of smaller splice trays or closures.
- Provides lower bending losses at higher wavelengths such as 1625 nm which future proofs the network.
- Improves temperature cycling and mid-span express tube routing loss performance providing long-term attenuation stability.

Lower PMD of 0.06 ps/√km Link Design Value
- Extends the PMD distance performance, reducing regeneration costs.

Improved Geometrical Parameters
- Low splice loss and high splice yield.

Proprietary APVD™ Manufacturing Process
- Superior geometry, uniformity and purity.

Revolutionary ColorLock™ Coating Process
- Increased reliability, durability, and superior aging performance, resulting in lower maintenance and replacement costs. Makes color a component of the coating, thus enhancing fiber identification and colored fiber reliability. Consistent, vibrant color for ease-of-use and flexibility.
BendBright™ A1 Single-Mode Optical Fiber - North America

Performance Specifications (Uncabled Fiber)

Maximum Attenuation (dB/km)*

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ 1310</td>
<td>0.34</td>
</tr>
<tr>
<td>@ 1383 **</td>
<td>0.31 – 0.34</td>
</tr>
<tr>
<td>@ 1490</td>
<td>0.24</td>
</tr>
<tr>
<td>@ 1550</td>
<td>0.20</td>
</tr>
<tr>
<td>@ 1625</td>
<td>0.23</td>
</tr>
</tbody>
</table>

* Other values on request.

** Including H2-aging according to IEC 60793-2-50, type B.1.3.

Attenuation vs. Wavelength

- 1285 nm to 1330 nm: $\alpha_{1330} \leq 0.03$ dB/km
- 1525 nm to 1575 nm: $\alpha_{1575} \leq 0.02$ dB/km

Point Discontinuities

No point discontinuity greater than 0.05 dB at 1310 nm and 1550 nm

Attenuation with Bending

<table>
<thead>
<tr>
<th>Mandrel Radius (mm)</th>
<th>Number of Turns</th>
<th>Wavelength (nm)</th>
<th>Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>1550</td>
<td>0.75</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1625</td>
<td>1.5</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>1550</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>1625</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Cutoff Wavelength

- Cable Cutoff Wavelength (λ_{ccf}) ≤ 1260 nm

Mode Field Diameter

- 1310 nm: 9.2 ± 0.4 μm
- 1550 nm: 10.4 ± 0.5 μm

Chromatic Dispersion

- 1285-1330 nm: ≤ |B| ps/(nm*km)
- 1550 nm: ≤ 18.0 ps/(nm*km)
- 1625 nm: ≤ 22.0 ps/(nm*km)
- Zero Dispersion Wavelength (λ_o): 1304-1324 nm
- Slope (So) at λ_o: ≤ 0.092 ps/(nm²*km)

Polarization Mode Dispersion (PMD)

- PMD Link Design Value**: ≤ 0.06 ps/V/km
- Max. Individual Fiber: ≤ 0.1 ps/V/km

** ** According to IEC 60794-3, Ed 3 (Q=0.01%)

Geometrical Specifications

Glass Geometry

- Core/Cladding Concentricity Error: ≤ 0.5 μm
- Cladding Diameter: 125.0 ± 0.7 μm
- Cladding Non-Circularity: ≤ 0.7%
- Fiber Curl: ≥ 4.0 m radius

Coating Geometry

- Coating/Cladding Concentricity Error: ≤ 12 μm
- Coating Diameter: 242 ± 7 μm
- Coating Non-Circularity: ≤ 6%
- Lengths: Up to 50.4 km

Mechanical Performance

- Minimum Proof Test: 100 Kpsi (0.7 GPa); 1% strain equivalent
- Tensile Strength: Median > 3.8 GPa (550 kpsi)
- Dynamic Fatigue: Dynamic: Unaged & Aged*** $\eta_{p}>20$
- Coating Performance Unaged & Aged***: Average Strip Force: 1N to 3N
 Peak Strip Force: 1.2 N to 8.9 N

*** Aging: 0°C and 45°C, 30 days at 85°C and 85% RH, 30 days water immersion at 23°C, Wasp spray exposure (Telcordia)

Environmental Performance

<table>
<thead>
<tr>
<th>Environmental Test</th>
<th>Induced Attenuation at 1310, 1550 nm (dB/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Cycling (-60°C to +85°C)</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Temperature Humidity Cycling (-10°C to +85°C, up to 98% RH)</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Water Immersion (23°C ± 2°C)</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Dry Heat (30 days, 85°C ± 2°C)</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Damp Heat (30 days, 85°C, 85% RH)</td>
<td>≤ 0.05</td>
</tr>
</tbody>
</table>

Environmental Test

<table>
<thead>
<tr>
<th>Effective Group Index</th>
<th>@ 1310 nm 1.467</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ 1550 nm 1.468</td>
<td>@ 1625 nm 1.488</td>
</tr>
<tr>
<td>Rayleigh Backscatter (Coefficient 3 ps = pulse width)</td>
<td>@ 1310 nm: -79.4 dB</td>
</tr>
<tr>
<td>@ 1550 nm: -81.7 dB</td>
<td>@ 1625 nm: -82.5 dB</td>
</tr>
</tbody>
</table>

© PRYSMAN - Brands of The Prysmian Group. 2020 All Right Reserved. The information contained within this document must not be copied, reprinted or reproduced in any form, either wholly or in part, without the written consent of Prysmian Group. The information is believed correct at the time of issue. Prysmian Group reserves the right to amend any specifications without notice. These specifications are not contractually valid unless specifically authorized by Prysmian Group. Issued May 2020.